Math software 57

Paragraph about Math software

Again the issue is how an account like Salmon's can capture this feature of successful explanation of the behavior of complex systems — how the account guides us to find the “right” level of description of the phenomena we are trying to explain. In fact, as the above examples illustrate, the requirements that Salmon imposes on causal processes-and in particular the requirement of spatio-temporal continuity — often seem to lead us away Math software from the right level of description. The level at which the spatio-temporal continuity constraint is most obviously respected (the level at which, e.g., we describe a particular consumer as exchanging cash for oranges or a grower as making an agreement via telephone with a retailer to sell at a certain price) seems to be the wrong level for achieving understanding.

In more recent work (e.g., Salmon, 1994), prompted in part by a desire to avoid certain counterexamples advanced by Philip Kitcher (Kitcher, 1989) to his characterization of mark transmission, Salmon attempted to fashion a theory of causal explanation that completely avoids Ufology any appeal to counterfactuals. In this new theory which is influenced by the conserved process theory of causation of Dowe (Dowe, 2000), Salmon defined a causal process as a process that transmits a non-zero amount of a conserved quantity at each moment in its history. Conserved quantities are quantities so characterized in physics — linear momentum, angular momentum, charge, and so on. A causal interaction is an intersection of world lines associated with causal processes involving exchange of a conserved quantity. Finally, a process transmits a conserved quantity from A to B if it possesses that quantity at every stage without any interactions that involve an exchange of that quantity in the half-open interval (A, B].

Contents
LaTeX editor
Equation editor

Hosted by uCoz