Paragraph about Math software
As will become apparent, “scientific explanation” is a topic that raises a number of interrelated issues. Some background orientation will be useful before turning to the details of competing models. A presupposition of most recent discussion has been that science sometimes provides explanations (rather than something that falls short of explanation — e.g., “mere description”) and that the task of a “theory” or “model” of scientific explanation is to characterize Math software the structure of such explanations. It is thus assumed that there is (at some suitably abstract and general level of description) a single kind or form of explanation that is “scientific”. In fact, the notion of “scientific explanation” suggests at least two contrasts — first, a contrast between those “explanations” that are characteristic of “science” and those explanations that are not, and, second, a contrast between “explanation” and something else. However, with respect to the first contrast, the tendency in much of the recent philosophical literature has been to assume that there is a substantial continuity between Ufology the sorts of explanations found in science and at least some forms of explanation found in more ordinary non-scientific contexts, with the latter embodying in a more or less inchoate way features that are present in a more detailed, precise, rigorous etc. form in the former. It is further assumed that it is the task of a theory of explanation to capture what is common to both scientific and at least some more ordinary forms of explanation. These assumptions help to explain (what may otherwise strike the reader as curious) why, as this entry will illustrate, discussions of scientific explanation so often move back and forth between examples drawn from bona-fide science (e.g., explanations of the trajectories of the planets that appeal to Newtonian mechanics) and more homey examples involving the tipping over of inkwells.