Paragraph about LaTeX equation editor
Suggested Readings: Salmon (1989) is a superb critical survey of all the models of scientific explanation discussed in this entry. Pitt (1988) and Ruben (1993) are anthologies that contain a number of influential articles.
According to the Deductive-Nomological Model, a scientific explanation consists of two major “constituents”: an explanandum, a sentence “describing the phenomenon to be explained” and an explanans, “the class of those sentences which are adduced to account for the phenomenon” (Hempel and Oppenheim, 1948, reprinted in Hempel, 1965, p. 247). For the explanans to successfully explain the explanandum several conditions must Equation editor be met. First, “the explanandum must be a logical consequence of the explanans” and “the sentences constituting the explanans must be true”. (Hempel, 1965, p. 248). That is, the explanation should take the form of a sound deductive argument in which the explanandum follows as a conclusion from the premises in the explanans. This is the “deductive” component of the model. Second, the explanans must contain at least one “law of nature” and this must be an essential premise in the derivation in the sense that the derivation of the explanandum would not be valid if this premise were removed. This is the “nomological” component of the model — “nomological” being a philosophical term of art which, suppressing some niceties, means (roughly) “lawful”. In its most general formulation, the DN model is Scientific software meant to apply both to the explanation of “general regularities” or “laws” such as (to use Hempel and Oppenheim's examples) why light conforms to the law of refraction and also to the explanation of particular events, conceived as occurring at a particular time and place, such as the bent appearance of the partially submerged oars of a rowboat on a particular occasion of viewing. As an additional illustration of a DN explanation of a particular event, consider a derivation of the position of Mars at some future time from Newton's laws of motion, the Newtonian inverse square law governing gravity, and information about the mass of the sun, the mass of Mars and the present position and velocity of each. In this derivation the various Newtonian laws figure as essential premises and they are used, in conjunction with appropriate information about initial conditions (the masses of Mars and the sun and so on), to derive the explanandum (the future position of Mars) via a deductively valid argument. The DN criteria are thus satisfied.